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Curvature fluctuations and the Lyapunov exponent at melting

Vishal Mehra and Ramakrishna Ramaswamy
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India

~Received 28 March 1997!

We calculate the maximal Lyapunov exponent in constant-energy molecular-dynamics simulations at the
melting transition for finite clusters of 6–13 particles~model rare-gas and metallic systems! as well as for bulk
rare-gas solids. For clusters, the Lyapunov exponent generally varies linearly with the total energy, but the
slope changes sharply at the melting transition. In the bulk system, melting corresponds to a jump in the
Lyapunov exponent, and this corresponds to a singularity in the variance of the curvature of the potential-
energy surface. In these systems there are two mechanisms of chaos—local instability and parametric insta-
bility. We calculate the contribution of the parametric instability toward the chaoticity of these systems using
a recently proposed formalism. The contribution of parametric instability is a continuous function of energy in
small clusters but not in the bulk where the melting corresponds to a decrease in this quantity. This implies that
the melting in small clusters does not lead to enhanced local instability.@S1063-651X~97!11508-2#

PACS number~s!: 05.45.1b, 36.40.2c, 64.60.My, 05.20.2y
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I. INTRODUCTION

In recent years the dynamics of finite condensed-ma
systems, especially atomic and molecular clusters, has
extensively studied from a nonlinear dynamics perspec
@1#. Various quantities of interest like Lyapunov exponen
Lyapunov spectra, distributions of finite-time Lyapunov e
ponents, and the Kolmogorov entropy have been compu
to see the evolution of chaoticity and ergodicity. Very ge
eral considerations lead to the expectation that the Lyapu
exponents and the Kolmogorov entropy should increase w
energy. However, there are indications that different syste
can display a variety of behaviors, and details of how su
indices change and the different kinds of possible~qualita-
tive as well as quantitative! behaviors—the various univer
sality classes, so to speak—have not yet been comple
characterized.

In the present work we calculate the largest Lyapun
exponentL for small rare-gas and metal clusters@modeled,
respectively, by the Lennard-Jones~LJ! and the many-body
Gupta @2# potentials# as well as for bulk rare-gas solid
namely 256 LJ atoms in a box with periodic boundary co
ditions. In the range studied,L is generally linearly related
to energy~except at very low energies!, but shows a sharp
change in slope at an energy which can be related to
melting transition.

We also compute an estimate forL through a semiempir-
ical methodology provided by a recently proposed geome
cal theory of Hamiltonian chaos@3#. Under certain approxi-
mations this allows for the estimation of the relati
contribution of stable modes of a Hamiltonian system tow
chaotic behavior. The approximations inherent in the the
@3# are fulfilled in bulk systems~whereN is large!, but do not
appear entirely satisfactory in small clusters. This geome
cal theory has as its input the curvature of the configura
space manifold and its fluctuation. These quantities and t
variation with temperature are themselves interesting
cause they yield a statistical quantification of the potent
energy surface. Recent approaches to the computatio
Lyapunov exponents from~local! instantaneous mode analy
561063-651X/97/56~3!/2508~10!/$10.00
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sis @4,5# use this information implicitly.
The simplest understanding of chaotic dynamics in su

~Hamiltonian! systems is the standard KAM picture@6#.
When the number of freedoms becomes large~for 13 atoms,
the phase space is 78 dimensional! the picture of a phase
space foliated by tori, with surrounding stochastic regions@6#
is not particularly relevant. However, the motion for speci
initial conditions remains nearly periodic, while for othe
there can be a positive Lyapunov exponent. In particular
KAM theorem underestimates the chaotic thresholds by s
eral orders of magnitudes@7# in high-dimensional systems a
the critical perturbation scales as;exp2aNf which rapidly
goes to zero with increasingNf ~degrees of freedom!, con-
trary to the experience in numerical simulations beginn
with Fermi, Pasta, and Ulam’s famous result@8#. Also, at-
tainment of chaoticity does not exhaust the interest
dynamics—in particular the evolution of the dynamics nea
thermodynamic phase transition is nontrivial. At energ
corresponding to the phase-transition phenomenon, the
cessible phase space increases greatly, and correspond
L shows a signature of the transition. An alternate mean
analysis is through decorrelation of the eigenvectors of
instantaneous Jacobian along a trajectory@4#. The time scale
for this process is greatly reduced by the presence of
regions of negative curvature~unstable modes!, which also
increase at the melting phase-transition point.

Such ideas have been at the root of a variety of studie
the Lyapunov exponent or related quantities. Posch
Hoover @9# calculated Lyapunov spectra of solid and liqu
LJ systems in two and three dimensions, and attempted t
a power law to this data, obtaining different exponents in
solid and liquid phases, although no definite significan
could be ascribed to these. Berry and co-workers@10# exam-
ined a variety of quantities including finite-time or local a
proximations to Kolmogorov entropy and Lyapunov spe
trum in LJ and Morse clusters containing between three
13 particles@10#. These studies have been able to make c
tact between the features of the potential-energy surface
the variation of different dynamical indicators. Recently Sa
try @4# computed the maximal Lyapunov exponent as well
2508 © 1997 The American Physical Society
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56 2509CURVATURE FLUCTUATIONS AND THE LYAPUNOV . . .
the entire Lyapunov spectra for a 32-atom Lennard-Jo
fluid in the temperature range 50–800 K. A power-law fit
L with temperature does not yield a single exponent bu
crossover~aroundT51) between the exponent5 1 at low
temperature to1

2 at high temperatures@11#. In a finite lattice
system, Butera and Caravati@12# simulated the coupled roto
system in two dimensions which has a Kosterlitz-Thoul
~KT! transition at constant energy and observed that the s
ing of L with the temperature changes at precisely the
temperature. Recent simulations on theXY model in two and
three dimensions by Caianiet al. @13# showed the difference
between the KT transition and a true symmetry-break
transition in three dimensions. The crossover in scaling oL
with temperature or energy per particle, also observed
other lattice models where it had purely dynamical sign
cance@14#, was suggested to coincide with the crosso
from slow to fast diffusion in the phase space@7#, and was
labeled as the strong stochasticity threshold~SST!. The gen-
erality of the SST in nonlinear Hamiltonian systems is n
obvious, although it appears to persist even for large deg
of freedom in the models studied. It was also found that S
occurs in lattice models with Lennard-Jones interactions
two and three dimensions@15#, the signature being a rapi
relaxation of the specific heat and independence ofL on the
initial conditions. Similar transitions have also been o
served in small rare-gas and metal clusters@16#. A somewhat
different interpretation of these results has also been
posed@17#.

In small rare-gas atomic clusters,L has been calculated a
the melting transition@18#, which is a finite-size analog o
the bulk melting transition@19#. WhereasL changes discon
tinuously with energy for LJ13 and LJ55, for LJ7 the slope
changes discontinuously. At the energy of this change, in
cators of melting like Lindemann index or density of sta
show characteristic signature, so it was proposed thatL is a
good indicator of melting transition@18,20#. Subsequent
work @21# has revealed that the behavior ofL as a function
of the energy is more complicated, and can be different
pending on the nature of the low-energy configuration t
the system starts from. More recently Dellago and Po
@22# calculatedL, the Lyapunov spectra, and related quan
ties like the fraction of unstable modes for the melting tra
sition of certain modified LJ systems in two dimension
They found thatL has a broad peak near the melting dens
and a steplike increase at the melting temperature, and
ther suggested that there is a change in the shape o
Lyapunov spectra at the transition density. Critical pheno
ena which occur at higher temperatures in larger fragmen
clusters have also been studied@23#, although the claimed
form for the ~finite-time! Lyapunov exponent, namely
L;(T2Tc)

2m, with universal behavior form, is question-
able @13,24#.

Our work in the present paper is focused on the study
clusters and bulk at the melting transition, with particu
emphasis on the Lyapunov exponent and the curvature
tuations. In Sec. II, we examine the behavior ofL, and in
Sec. III, the nature of the curvature fluctuations are analy
in order to make contact between theory and simulatio
The methodology and theoretical background for the extr
tion of L from curvature data is elaborated upon in Sec.
where our results for bulk as well as cluster systems are
es
f
a

s
al-

g

in
-
r

t
es
T
n

-

o-

i-
s

e-
t
h
-
-
.
y
r-
he
-
g

f
r
c-

d
s.
c-
I
so

presented. This is followed by a summary and discussion
Sec. IV.

II. MELTING AND LYAPUNOV EXPONENT
IN CLUSTERS AND BULK

As is by now well known@25#, atomic clusters with as
few as six or seven particles undergo a finite-size analog
the bulk melting phase transition, which is marked by a jum
in the Lindemann index and the onset of rapid isomerizati
The liquidlike phase of the small clusters is, however, unl
the bulk liquid in one important respect: due to the pha
space constraints, the atomic displacements~‘‘hopping pro-
cesses’’! are highly correlated, giving rise to 1/f spectra of
single-particle potential-energy fluctuations@26#. It has been
observed that in metal clusters particles can occupy
types of sites—of low and high energy, respectively, and
onset of the liquid phase corresponds to the onset of
isomerization occuring through four-particle interchange
tween high- and low-energy sites@27#. Similar features are
also expected for rare-gas clusters. This peculiar dynam
has interesting consequences which we examine in this
tion.

We consider clusters of up to 13 atoms interacting via
LJ potential

V54e(
i , j

F S s

r i j
D 12

2S s

r i j
D 6G , ~1!

which is appropriate for rare-gas atoms; we work in reduc
units whens5e51. In order to model metallic clusters, th
many-body Gupta~Gu! potential@2#

V5~1/2!U(
j

H A(
i

exp@2p~r i j 2r 0!#

2F(
i

exp@22q~r i j 2r 0!#G1/2J ~2!

is commonly used. Herer i j is the distance between th
atomsi and j , andr 0 is the interatomic distance in the bul
~fcc! crystal. The specific metallic cluster system we mod
corresponds notionally to Ni, for which we use paramet
given in Ref. @25#: p59/r 0 , q53/r 0 , A50.101 035, and
U/Ebulk50.855 05 (Ebulk is the bulk cohesive energy of th
metal by which all energies are scaled!. Quantities likeL
and Kolmogorov-Sinai entropy have been calculated
small rare-gas clusters and the relation of the potent
energy surface to local dynamical behavior has been a
lyzed @10,28#. In particular it is known that smooth saddle
cause a drop in local chaoticity indicators@10#.

Time is measured in units of (ms2/e)1/2 for LJ clusters
and (mr0

2/Ebulk)
1/2 for Gupta clusters. Constant energy sim

lations are done using the Verlet algorithm with step s
Dt50.01 in these units, and the total energy is conserve
0.01%. The total integration time varies between 105Dt to
53105Dt depending on the potential and the system si
Simulations start at the global minimum of the structure, a
then gradually move up in energy; at the highest tempe
tures studied evaporation does not set in within the ti
period of the computation. Temperature is defined in
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2510 56VISHAL MEHRA AND RAMAKRISHNA RAMASWAMY
usual manner, as proportional to the average kinetic ene
per particle,T52^Ek&/@kB(3N26)#, kB being the Boltz-
mann constant.

At very low energies the dynamics is nonergodic; in p
ticular, for 13-particle clusters the nonergodicity can be p
sistent up to rather high energies. The breathing mode
LJ13 was recently studied in Ref.@29#. This mode is stable
~i.e., nondecaying! up to an energyE50.150 per particle
above the global minimum; the corresponding mode for
7 survives only up to energy 0.042 above the minimu
Stability here is tested by starting trajectories with an isot
pic stretching of the global minimum structure. In this no
ergodic region the system initialized with a small rando
distortion of the icosahedral structure has a very small p
tive Lyapunov exponent, while, for larger distortions at t
same energy,L can be much larger. As energy increases,
overall cluster distortions increase, and this mode beco
markedly unstable. For large initial distortions from icosah
dral geometry of LJ13, a chaotic transition occurs at a lowe
energy and is manifested as the divergence of the micr
nonical specific heat@16#. This energy depends on the equi
bration time, but tends to a nonzero value for large equ
bration times. Such transitions are not size specific, and h
been seen for nonmagic clusters as well.

Figure 1 shows the variation ofL(e) with the reduced
energy per particle,e, for LJ and Gu clusters of vari
ous sizes. At higher energiesL(e) is linear but at a certain
energy a sharp change in the slope is evident in all ca
Precisely at this energy the conventional criterion of me
ing applies, namely, the Lindemann index crosses the v
0.1 ~Lindemann indices for Gu clusters were studied
Ref. @25#!. In LJ13, which has a large solid-liquid coexis
ence region between22.6,e,22.2, L changes slope a
e'22.6. In LJ6, where the Lindemann index increases co
tinuously, the discontinuity inL appears just after the Lin

FIG. 1. ~a! L as the function of reduced energy per particle
LJ clusters withN56, 7, 9, 11, and 13. Note that the list include
both magic and nonmagic clusters.~b! L for Gu clusters with
N56, 7, and 13. The reduced energy scale is set byEbulk @Eq. ~2!#.
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demann index has reached its critical value 0.1. The slop
the liquid phase is always smaller, indicating that the dif
sive modes have different chaotic properties, giving rise
different energy dependence ofL.The change in the slope o
L(e) can also be taken to be a characteristic signature
melting in small clusters. The slope of theL(e) curves are
generally smaller for the larger cluster; furthermore, t
sharpness of the discontinuity~in slope! is reduced as the
cluster size increases.

For the Gupta clusters, however, these trends withN are
not strongly marked, which is a consequence of the ma
body character of the Gu potential: even if a pair of partic
is not interacting directly~being outside the potential cutoff!,
the corresponding elements of the Hessian matrix need
vanish because of the many-body term. We find that
slope changes distinctly at an energy corresponding to
top of the jump in the Lindemann curve.

The third system we study is bulk, and Fig. 2~a! shows
L(e) for the system of 256 LJ particles in a cubic box wi
periodic boundary conditions at the reduced dens
r50.93 and reduced melting temperature 1.15. Initial con
tions for these simulations were as follows: the atoms w
initially at fcc lattice positions, with initial velocities taken
randomly from an appropriate Gaussian distribution. F
e.24.25 the crystal is unstable and soon melts. It is p
sible for melting to occur for slightly lower energies if inte
gration is carried for longer times, but the time required
melt is not a monotonically decreasing function of energ
HereL(e) shows a jump which obviously can be ascribed
the increase in the disorder at melting. The data shown
the Lyapunov exponent of the solid- or liquid-phase traje
tory only, which are obtained by discarding the premelti
portion of a trajectory that melts. Similar results for bu

FIG. 2. ~a! Lyapunov exponents for the bulk LJ system of 25
particles in a cubical box with periodic boundary conditions. Circ
refers toL, and squares to the estimatel generated using Eq.~8!,
with t defined in Eq.~10!. Pluses (1) denote values ofl calculated
usingt25k1/2/s. ~b! Mean curvature (k), and fluctuations for the
bulk LJ system as a function of energy.k and s are measured in
units of frequency squared.
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56 2511CURVATURE FLUCTUATIONS AND THE LYAPUNOV . . .
melting have also been reported in Refs.@22# and @30#.
While both the bulk and the cluster are disordered

melting ~change in entropy at melting,DS/N51.0 for the
LJ55 and 1.7 for the LJ crystal@19#, and the specific heat o
even a six-particle cluster shows a peak!, L in the cluster
liquid phase is significantly smaller than the value obtain
by extrapolating from the solid phase, in contrast withL
obtained in bulk liquid. This suggests that in the cluster l
uid phase there are stabilizing influences on the dynam
which are absent in the bulk liquid. We conjecture that
correlated hopping processes in clusters@26,27# provide the
necessary mechanism. This is consistent with the observa
made above that theL(e) curve becomes smoother with th
cluster size.

The observed Lyapunov phenomenon for the cluster
not just an effect of the smeared-out bulk transition, i.e
manifestation of finite dynamical coexistence region in
clusters which vanishes in the bulk limit. The properties
the coexistence region~in particular its width! depend sensi-
tively on the cluster geometry, e.g., the fact that the cluste
magic or not. But the trends in the Lyapunov exponent
pend on the size in a simple manner and are independe
the magic-nonmagic relation.

The spectra of 3N27 positive Lyapunov exponents fo
the clusters vary smoothly with energy. For LJ clusters th
are linear in the entire range with a slope that increases
energy, while in Gu clusters they acquire increasing cur
ture. This is in contrast to the results of Dellago and Po
@22# for bulk melting in two dimensions, where the curvatu
of the spectra changes sign smoothly at certain densitie~at
constant temperature!. It remains a task to extract more us
ful information from the shape of the Lyapunov spect
However, the smoothness of the spectra at cluster me
implies that the relation~if any! between thermodynamic an
dynamic entropies is nontrivial.

III. CURVATURE FLUCTUATIONS

In this section we apply the geometric theory of Ham
tonian chaos developed by Pettini and co-workers@3# in or-
der to interpret and rationalize the results of our numer
simulations in terms of an underlying~microscopic! mecha-
nism. This theory, the salient features of which are summ
rized below, is attractive because it attempts to unite featu
of the potential-energy surface with the dynamical proper
of the system as encoded in the Lyapunov exponents.
additional motivation in applying this theory to finite clust
systems is to determine the limits of applicability of the ge
eral framework, which has mainly been applied to latt
models where the calculated Lyapunov exponents are fo
to be in good agreement with empirical exponents@3,13#.

A. Geometric theory of chaos in high-dimensional systems

It is well known that the classical dynamics on manifol
of constant negative curvature is chaotic@31#. The dynamics
on a manifold with fluctuating positive curvature can also
chaotic@32#: this fluctuation, via the mechanism of parame
ric instability, is responsible for creating chaos in syste
such as the Fermi-Pasta-Ulamb andf4 chains@7#, and for a
driven one-dimensional oscillator studied in Ref.@33#. These
studies have provided much of the motivation for the dev
y
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opment of the geometric theory of chaos@3#. Barnettet al.
@34# applied similar ideas to a calculation of the Lyapun
exponent of a dilute gas.

The geometric theory makes a diagonal approximation
the sense that it uses information only about the trace of
instantaneous Hessian matrix, i.e.,DV. When the equations
of motion are put in a differential-geometric form, this ter
appears as the Ricci curvature~curvature locally averaged
over the directions! of the enlarged configuration manifold i
the Eisenhart metric@3#,

ds2522V~q!dt21ai j dqidqj1dtdqNf11. ~3!

Here V(q) is the potential energy and the kinetic energy
T5ai j q̇

i q̇ j . The relevance of potential curvature has be
noted before@35#. The Ricci curvature does not have th
simple form in other metrics, but the essence of the assu
tion is that all the directions in the phase space are equ
curved after a coarse graining along a trajectory. The
namical trajectories are the geodesics of this manifold.
above models this appears to be the dominant mechanism
chaos as there are no unstable modes~corresponding to the
negative eigenvalues of the instantaneous Hessian matr
regions of negative curvature!, which are thelocal mecha-
nism of chaos.

If it is assumed that the curvature fluctuations ha
Gaussian spectra up to a high-frequency cutoff, i.e., the
namics generates a Gaussian random process for curvat
then one can dispense with the necessity of following a
jectory and an estimate of the largest Lyapunov expon
l can be obtained via Monte Carlo sampling. This is t
essence of the Gaussian approximation@3#, within which ex-
cellent agreement is obtained betweenL and l. The pres-
ence of additional unstable modes renormalizes the ca
lated exponent, although this is nontrivial to calcula
Therefore the unrenormalized exponent gives an estimat
the chaoticity caused by stable modes only~the unstable
modes also contribute to parametric instability by their pr
ence inDV, but it is not their major effect on chaoticity!. The
theoretical basis of the diagonal approximation assumptio
that the local fluctuation of the Ricci curvature detects dev
tion from isotropy~at a point! because isotropic manifold
are necessarily of constant curvature by Schur’s theorem@3#.

The crossover between the regimes of weak and str
chaos in high-dimensional systems can be detected by ex
ining the behavior of the mean curvature,k, as a function of
the energy density. In the integrable limitk is independent of
energy@3#. Corresponding to a HamiltonianH of N particles
with an interactionV,

H5(
i

pi
2

2
1V~q!, ~4!

there are 3N equations of motion:

d2qi

dt2
52

]V

]qi
. ~5!

The associated Jacobi equation for the second deviation
then
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d2Ji

dt2
1(

j

]2V

]qi]qj
Jj50, ~6!

whereJi are the components of the vector of second dev
tions. After some approximations@3#, this can be converted
to an equation foru5uJu,

d2u

dt2
1(

i j

]2V

]qi]qj

JiJj

uJu2
u[

d2u

dt2
1Q~ t !u50, ~7!

which is, in effect, an equation for a linear oscillator wi
time-dependent frequencyAQ. The solutions of this equation
are unbounded for typicalQ(t) and the Lyapunov exponen
is just given by the rate of exponential growth of the env
lope of u @36#. Pettini and co-workers@3# showed that
Q(t) is just the sectional curvature~which is the generaliza
tion of Gaussian curvature to many dimensions! relative to
the plane containingJ and dq/dt in the Eisenhart metric
The diagonal approximation consists in replacingQ by the
simpler quantity

DV

Nf
5

1

Nf
(

i

]2V

]qi
2

, ~8!

with Nf the number of degrees of freedom, which is@3# the
Ricci curvature per degree of freedom, i.e., the sectional
vature has been averaged over relative orientations ofJ and
the velocity vector. Under the further assumption that
curvature is Gaussian distributed with a meank5^DV&/Nf
and variances25@^(DV)2&2^DV&2#/Nf and ared corre-
lated, Pettini and co-workers@3# derived an expression for a
estimate of the Lyapunov exponent

l5
1

2S l 2
4k

3l D , ~9!

l 5Fs2t1S 64k3

27
1~s2t!2D 1/2G1/3

, ~10!

wheret is a characteristic time implied by the smoothness
the underlying manifold, i.e., the time interval below whic
dynamics of curvatures cannot be regarded as a random
cess.

B. Application of the geometric theory

The main result of the geometric theory is an estimate
the Lyapunov exponent,l given in Eq.~9!, for which it is
necessary to obtain the mean curvaturek and the variance
s2. These quantities can be calculated along a typical tra
tory using Eq.~8!, and the assumption ofd-correlated curva-
ture fluctuations can be directly verified.

The determination of the time scalet @see Eq.~10!# is
more tricky. One estimate which has been used@3,13,37# is

t5
pAk

2Ak~k1s!1ps
. ~11!

This expression fort here is actually that fort! in Ref. @3#
@see the discussion following Eq.~45! there#. However, in
-

-

r-

e

f

ro-

f

c-

the presence of negative curvatures it may be more accu
to use a different time scale@3#,

t25
k1/2

s
. ~12!

We find ~see Sec. III C! that t2 is more accurate thant
insofar as it provides a better numerical match with the
tocorrelation decay time scale for the systems studied he

One additional minor point is that the effective number
freedoms isNf53N26 rather than 3N, since the six con-
served quantities~linear and angular momenta! give rise to
zero-frequency modes and thus do not contribute to the ch
ticity. This does not change qualitative conclusions~indeed it
must not!, and improves results in most cases.

The application of the geometric theory to the syste
considered in Sec. II is of interest for two reasons. First, t
formalism has so far been mostly applied to lattice mode
where parametric instability is the main source of chaos
would be useful to determine the extent to which the form
ism works for off-lattice models with significant local insta
bility. Second, the partition of the chaoticity of the syste
into local and nonlocal components may help in clarifyi
the behavior of Lyapunov exponent at melting. In particul
it would be interesting to know whether the overall instab
ity of the system can be separated into these two com
nents, and, if so, whether they behave differently at ph
transitions.

The melting transition in finite systems appears to hav
distinct signature—the Lyapunov exponent shows a kn
where the slope changes discontinuously@20#. For bulk, the
fraction of the unstable modes has a discontinuous jum
melting. Therefore a rapid increase in local instability a
consequently, a jump in the Lyapunov exponent can be
pected. Such a change may not be apparent in the cont
tion of the parametric instability, and therefore in the situ
tion of cluster melting where Lyapunov exponent does
increase, it is an open question whether the local instab
increases or not.

C. Results

As should be clear from the preceding discussion, ap
cation of the geometric theory in order to make comparis
with the results of our numerical simulations involves a nu
ber of sensitive estimates and several approximations.
lowing the general procedure outlined in Sec. III B abov
we calculated the estimatel @cf. Eq. ~9!# for bulk ~LJ! and
various LJ and Gu clusters in an energy range which enc
passes melting, from long trajectories of duration up
23106Dt. The data fork, s andl are shown in Figs. 2–6
The detailed comparisons of theory and simulations are
sented separately for bulk and cluster systems below.

1. Bulk LJ system

Casetti and Macchi@37# have calculated the curvature fo
bulk LJ in an exponentially large energy range in order
detect the crossover between weakly and strongly cha
regimes. Earlier calculations by LaViolette and Stilling
@38# of the mean curvature~which is proportional to the
squared Einstein frequency! show thatk increases linearly in
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the bulk LJ system with a jump of about 20% at meltin
This increase is a manifestation of the positive hig
frequency tail in the instantaneous normal spectrum in
liquid phase. However, the slope in the liquid phase
smaller than the solid phase by about 6%.

We find that the variances2 has adiscontinuityat an
energyem524.17. At energies well away fromem , s in-
creases linearly with energy but in a very narrow range p
cedingem , roughly corresponding to the solid-liquid coe
istence region,s increases sharply. As the system meltss
falls by about 30%.~The discontinuity ins has been con-
firmed by repeating the calculations with longer trajector
and finer energy mesh. Data in the coexistence region w
computed from long trajectories of total time 23105Dt.

FIG. 3. ~a! Mean curvaturek and ~b! fluctuation s for LJN

clusters withN56, 11, and 13 as functions of energy. Units are
in Fig. 2.
.
-
e
s

-

s
re

Care was taken to ensure that computed averages are
either the solid or liquid phase exclusively.! This behavior
may be contrasted with the cusp singularity found recently
the XY model in three dimensions by Caianiet al. @13#,
which was interpreted as suggestive of a topological tra
tion in the potential-energy surface.

The assumption ofd-correlated curvature fluctuation ca
be substantiated by examining the power spectra of curva
fluctuations. Figure 7 shows that these are satisfied in
bulk. However the observed correlation time does not ag
with t given in Eq.~11! ~see Table I!. We therefore uset2 to
calculate the relative contribution of unstable mod
namely,

dlu[~L2l!/L. ~13!

Indeedl(t2) is much better fit toL than l(t) ~Fig. 2!.
dlu can become slightly negative in the solid phase~imply-
ing some correction due to correlations!, while in the liquid
phase, it can be as large as 0.35. Assignment of the dif
enceL2l to the effect of unstable modes is justified by t
following two observations. First,l does not increase a
melting ~it actually falls!, whereasL has significant jump
which can be accounted for by an increase in the fraction
unstable modes. In addition, the agreement ofl and L is
better at lower temperatures, namely, when the occurrenc
negative curvatures is infrequent.

2. Clusters

Owing to the finiteness of cluster systems, correlations
not decay sufficiently rapidly@27#. As a consequence, curva
ture fluctuations are far from being uncorrelated, and
framework of the geometric theory breaks down for su
systems and deviations from Eq.~9! can be expected. The
observed correlation times do not agree with analytical e
mates fort andt2 ~Table I!.

The mean curvature for specific LJ clusters has been c
puted previously@39,40#, and, in contrast to bulk, decrease
uniformly with energy for all clusters~except LJ13); likewise

s

y.

FIG. 4. The estimatel for LJN clusters with

N56, 11, and 13 as the function of energ
Shown with circles arel calculated witht de-
fined in Eq. ~10!; 1 are values ofl calculated
usingt25k1/2/s. Also, for comparision, we show
the corresponding values ofL from Fig. 1
~squares!.
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FIG. 5. ~a! Mean curvature (k) and~b! fluctuation (s) GuN clusters withN56, 7, and 13 as a function of energy.k ands are scaled by
Ebulk /mr0

2.
s

e

elt-
ng
for Gupta clusters. No trend is apparent either fork or its
variation with energy, although there are some size effect
the case of Gupta clusters. The behavior of the variances2 is
more complex. Although this quantity usually increas
in

s

smoothly with energy, in the coexistence regime near m
ing there are large fluctuations which persist for very lo
averaging times. The liquid phase in LJ13 also shows a non-
monotonic dependence of variance on energy.
FIG. 6. The estimatel for GuN clusters with
N56, 7, and 13 as a function of energy~same
conventions as Fig. 4!.
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FIG. 7. Power spectra of curvature distribu
tion calculated along a trajectory for~a! bulk LJ
~solid!, ~b! bulk LJ ~liquid!, ~c! LJ13 at an energy
of 22.4 corresponding to the temperature 34
~coexistence region!, and ~d! Gu13 at e520.67
~liquid phase!. The vertical axis is in arbitrary
units.
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The net result of the persistence of correlations is that
estimatesl for cluster systems do not agree withL. While
l(t) is a rather good fit for LJ clusters, it is of doubtfu
validity becauset is far from the observed fluctuation time
scaletc ~Table I!. Using t2 in Eq. ~9! givesl/L'1.3–2.5
for LJ clusters, although for the tightly bound Gupta cluste
this discrepancy is smaller,l/L'0.8–1.2.

3. Discussion

Our results indicate that unstable modes have suppre
chaoticity in certain circumstances. In particular, in the so
LJ system, wheredlu is very small, the fraction of unstabl
modes is substantial (;0.2), while a slightly higher
(;0.2520.3) fraction of unstable modes in liquid gives

TABLE I. Typical time scales~in reduced units! associated with
power spectra for various systems studied here.

System t a t2
b tB

c tc
d L

Gu6 solid 0.30 1.5 0.8 2.0 0.2

Liquid 0.18 0.4 0.7 1.1 0.7

Gu13 solid 0.28 0.9 0.8 1.4 0.3

Liquid 0.18 0.36 0.7 0.9 0.8

LJ6 solid 0.55 1.6 2.5 10. 0.05

Liquid 0.4 0.8 1.0 1.0 .25

LJ13 solid 0.5 1.4 1.7 2.5 0.1

Liquid 0.3 0.6 1.0 1.0 0.3

Bulk solid 0.2 0.5 0.6 0.6 0.3

Liquid 0.2 0.6 0.4 0.4 0.8

aCalculated with Eq.~10!.
bCalculated with Eq.~11!.
cObtained from approximate upper cutoff of the power spectrum
dInverse bandwidth of the power spectrum~approximate!.
e

,

ed

greatly enhanced value ofdlu(;0.35). In the cluster, even
after melting,dlu does not increase very much: it has
smooth dependence on energy. A tentative conclusion
can be drawn from these cases is that unstable modes
effective chaoticity only when the particles are free to e
ecute large-scale motion.

If the coarse-grained curvature is everywhere positive,
ratio s/k provides a crude measure of the ruggedness
roughness of the underlying potential-energy surface. As
this feature which causes nearby trajectories to diverge,
interesting to study the variation of this index with energy,
this will give some indication of the nature of the region th
is being dynamically probed on the potential-energy surfa

At low energiess/k is small, as expected, typical value
being ;0.2–0.4. At the highest energies reached, it is
tween 0.8 and 1.2 for various clusters with somewhat hig
values for LJ clusters and smallerN. In the bulk system, a
peaks/k'0.8 is reached at the melting point~from the solid
phase!, and then it remains nearly constant. The corresp
dence of the maximal roughness with the melting point
very suggestive. One can visualize destruction of the cry
lattice being driven by large-scale roughness of the poten

IV. CONCLUSION

In this paper we have examined the behavior of the larg
Lyapunov exponentL as a function of energy in finite clus
ters of 6–13 rare-gas and metal atoms, and in bulk rare
solids. These systems undergo a phase transition from a
gime wherein the dynamics is purely oscillatory~involving
individual particle vibrations! to a regime where the dynam
ics is both oscillatory as well as diffusive.

Diffusive dynamics is linked to the presence of deloc
ized unstable modes in the bulk@41#. In small clusters the
onset of the diffusion does not appear to enhance the c
ticity: the observed value of the Lyapunov exponent
smaller compared to the value expected by a simple extra
lation of the exponent from the low-energy regime, name
from the oscillatory dynamics or the ‘‘solid’’ phase. Th
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suppression of chaos, which we attribute to the correla
hopping dynamics, is strongest for smallest clusters bu
then progressively reduced. It is possible that, for particu
clusters, the enhancing and suppressing effects of the
stable modes can balance, and theL(e) curve is smooth
across the melting~in fact LJ17 shows no signature of melt
ing according to this measure@42#!. This conjecture can be
tested by studies of the larger clusters with calculations
the participation ratios of the unstable modes, which w
clarify their role in the chaoticity of a dynamical system.

One may intuitively expect that unstable modes~i.e.,
negative curvatures! cause the dynamics to be chaotic. A
noted by Dellago and Posch in their study of melting
two-dimensional systems@22#, the fraction of unstable
modes, which is a rough measure of negative curvatures
a similar dependence on the parameters asL. These unstable
modes can, however, become important only when parti
are capable of large-scale motion.~In a related context, it has
been seen@30# that L falls when a liquid is cooled through
its glass-transition temperature, namely, as the unst
modes becomes localized@41#.!

Using the framework of a geometric theory of Ham
tonian chaos, we computed an estimate for the Lyapu
exponent from the curvature of the potential-energy surf
and its fluctuation. We studied the variation of these qua
ties with the temperature of the system, and found that
mean curvature is always a monotonic function of energy
the variance has a simple energy dependence only
smaller clusters. In the coexistence region of 13 part
clusters—these are the cases in which the potential-en
surface has a deep global minimum which is well separa
from the next lowest structure—s is nonmonotonic. The LJ
bulk system shows a singular behavior fors at melting,
which may indicate some sort of topological change in
configuration space@13#.

The resulting estimatel is generally larger thanL in the
solid phase. For bulk, the discrepancy is small, but for cl
v

d
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r
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f
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le
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e
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e
gy
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ters, the agreement is only qualitative. Curvature fluctuati
for clusters are correlated, and this effectively reduces
parametric instability in the dynamics. The spectral featu
of the curvature fluctuations such as bandwidth are not w
accounted for by the geometric theory even for the bulk s
tem. At higher temperaturesl is lower thanL, which is
attributed to the unstable modes~negative curvatures! which
are ignored in the geometric theory. The contribution of t
unstable modes toward chaoticity~obtained by subtractingl
from L and therefore only approximate! is small in the solid
phase, but can be as large as one-third in the liquid ph
Since s and k do not show any singularity at melting fo
clusters, the parametric contribution coming from the chan
in topography of the potential-energy surface chan
smoothly. Therefore, the fractional chaoticity coming fro
the unstable modes,dlu , also seems to vary continuous
with energy.

In summary, our application of the geometric theory
the dynamics of the melting transition for cluster and bu
systems has provided a satisfactory qualitative understan
of the underlying mechanisms in terms of the change
roughness of the potential-energy surface, curvature fluc
tions, and parametric instability. While agreement betwe
theory and simulation is reasonable for the bulk system,
the case of finite clusters the situation is less satisfact
The main source of the discrepancy seems to lie in the
that, in cluster systems, correlations are temporally lo
lived. This aspect must be incorporated within the pres
framework of the geometric theory~see, e.g., Refs.@33,36#!
in order to achieve quantitative accuracy.
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